Adaptation and Technological Change

Karen Fisher-Vanden, Penn State University Elisa Lanzi, FEEM David Popp, Syracuse University Ian Sue Wing, Boston University Mort Webster, MIT

Purpose of the talk

<u>Charge</u>: To provide a summary of the state of the science on the influences of adaptation on the social cost of climate change; specifically, discuss

- (1) relevant studies on the observed or potential effectiveness of adaptive measures, and on private behaviors and public projects regarding adaptation;
- (2) relevant studies on how to forecast adaptive capacity;
- (3) how adaptation and technical change could be represented in an IAM (for at least one illustrative sector);
- (4) whether the information required to calibrate such a model is currently available, and, if not, what new research is needed; and
- (5) how well or poorly existing IAMs incorporate the existing body of evidence on adaptation

General conclusions

- Modeling adaptation is inherently difficult. Requires advancements in modeling techniques
- Coverage of empirical work on adaptation limited. Requires heroic efforts to bring into IAMs. Need to bridge gap between models and empirical studies.
- Adaptation-related technological change is lacking in current IAMs. More empirical work is needed in this area to inform existing models.

- Adaptation is in response to current or anticipated impacts. Comes in two forms:
 - <u>Reactive</u>—e.g., changes in heating/cooling expenditures; treatment of disease; shifts in production
 - <u>Proactive</u>—e.g., infrastructure construction (seawalls); early warning systems; water supply protection investments

Need explicit representation of climate damages to induce reactive expenditures and proactive investment.

- Proactive adaptation investment decisions made today to provide possible future protection; decisions are therefore
 - Inherently intertemporal
 - Made under uncertainty

Need model that can allows for intertemporal decision-making under uncertainty.

- Is adaptation-related technological change markedly different from mitigation-related technological change?
 - Public R&D versus private R&D?
 - Inducements different?

Need model capable of distinguishing between these two types of technological change.

Impacts and adaptation responses are locally- or regionally-based. Adaptation expenditures are sector-specific.

Therefore, need model that includes

- regional detail
- sectoral detail
- method to aggregate to more coarse representation

Important model features for adaptation

- Explicit modeling of climate damages/impacts
- Intertemporal decision making under uncertainty
- Endogenous adaptation-related technological change
- Regional and sectoral detail
- Connection with empirical work on impacts and adaptation

Model	Impacts	Regional detail	Sectoral detail	Link to empirical work on adaptation	Intertemporal?	Uncertainty	Adaptation
AD-WITCH	Region-specific climate damage functions	12 regions	Bottom-up energy sector (7)	To separate adaptation costs and residual damages	Optimal growth-Perfect foresight	Application where uncertain R&D modeled implicitly	Investment in proactive, reactive, and knowledge adaptation
AD-DICE/AD- RICE	Region-specific climate damage functions (AD- RICE)	13 regions (AD-RICE)	One aggregate economy for each region	Similar to AD- WITCH	Optimal growth-Perfect foresight		Adaptation investment included as decision variable
PAGE	Region-specific damage functions for two sectors (economic and noneconomic)	8 regions	One economic sector for each region	IPCC TAR?	Simulation model	Stochastically models catastrophic events	Simple adaptation included which increases tolerable level
FUND	Damage function for each of 8 sectors	9 regions	8 market and non- market sectors	Limited	Simulation model	Application with monte carlo simulation	Explicit in ag and coastal sectors; implicit in energy and human health
GTAP- E/GTAP-EF	Used for separate impact studies	8 regions	CGE-8 or 17 sectors	Limited	Static		
ICES	Models 5 impacts simultaneously	8 regions	CGE-17 sectors		Dynamic recursive		
FARM	Sea level rise and impacts on agric	12 regions— detailed	CGE-13 sectors	Limited	Static		Coastal protection

Empirical studies on adaptation

- Agrawala and Fankhauser (2008)—OECD publication which summarizes empirical work on adaptations costs.
 - Sectors include: coastal zones; agriculture; water resources; energy demand; infrastructure; tourism; and public health.
- World Bank (2010)—report from the Economics of Adaptation to Climate Change (EACC) research program at WB
 - Seven sector-specific studies on adaptation costs: infrastructure; coastal zones; water supply and flood protection; agriculture; fisheries; human health; extreme weather events
- UNFCCC (2007)—Four regional (Africa, Asia, Latin America, and small island developing States) studies on vulnerability, and current and future adaptation plans/strategies.
 - Information from UNFCCC National Communications, regional workshops, and expert meetings.

Recommended future research areas— Decision making under uncertainty

- > Past approaches involve:
 - 1. Create multiple States of the World (SOWs)
 - 2. Index all variables and equations in model by SOW.
 - 3. Solve by constraining decision variable to have single value across SOWs in all time periods before information is known.
- Problem with this approach: Rapidly becomes intractable for more than a few SOWs.
- New research by Mort Webster (MIT) applying Approximate Dynamic Programming introduced by Powell (2007):
 - 1. Sample state space using Monte Carlo techniques
 - 2. Approximate value function from these samples
 - Solve for approximate optimal policy using these approximate value functions

Recommended future research areas— Adaptation-related technological change

- Adaptation-related technological change largely absent in current models
- Most models calibrated based on current adaptation cost estimates. No allowance for technological improvements.
 - Exception: AD-WITCH includes investment in adaptation knowledge which lowers future cost of adaptation. Only applied to health care sector.
- Lack of empirical studies limits modeler's ability to represent adaptation-related technological change in current models
- More empirical work in this area is desperately needed

Recommended future research areas— Empirical work on adaptive capacity

- > Regional differences in adaptive capacity important to capture in models. Will affect distributional effects of climate impacts
- Largely absent in existing models
 - Exceptions:
 - FUND model assumes wealthier nations less vulnerable to climate impacts in the energy and health sectors.
 - AD-WITCH's investment in adaptation knowledge also captures expenditures to improve region's ability to adapt
- ➤ Although in both cases, modelers were limited by lack of empirical data. UNFCCC (2007) provides adaptive capacity measure but only for four aggregate regions.
- Heroic efforts required to translate this little empirical information to model parameters

Recommended future research areas— Dynamics of recovery

> Lack of empirical evidence on the dynamics of recovery from climate change impacts.

E.g., time to recovery, thresholds and factors affecting these variables

- Important for model calibration
- In general, need techniques to better translate results from empirical studies to models; e.g.,
 - Regional and sectoral detail do not typically align

*** Going forward, we need to devise better ways to facilitate communication between empirical researchers and modelers.

Questions?/Discussion?